Everything an organization does should tie to one of three universal value drivers

  1. Increase revenue and value
  2. Manage cost and complexity
  3. Support Risk Management and Compliance efforts, and increase confidence.

Data Governance efforts MUST tie back to one or more of these drivers.  And YOU must communicate how it does.

Demonstrating Value

Here are some of the ways a Data Governance effort can benefit you:

Increase revenue / value of assets

  • Improve the value of the company to those who would acquire it
  • Create “sellable” information products
  • Utilize information assets to make new sales
  • Utilize data to achieve new business capabilities
  • Better understand customers
  • Better understand product (and other) hierarchies

Reduce costs

  • Reduce duplicate data and its costs
  • Reduce duplicate data management processes (example: costs of data modeling, data administration, data quality)
  • Reduce likelihood of errors and associated costs (in software development, report development, information interpretation) due to lack of understanding of data or poor quality data

Support Compliance While Reducing Costs

  • Achieve compliance goals
  • Avoid cost of penalties associated with non-compliance
  • Avoidance of reputational hit (brand impact)
  • Avoid higher audit fees due to lack of confidence in “authoritative data”
  • Reduce management attestation/certification costs
  • Reduce costs of pre-audit testing

Support Impact Analysis

  • Increase ability to do useful impact analysis (by providing authoritative business rules, system of record information, and data lineage metadata)
  • Provide a capability to assess cross-functional impacts of data-related decisions

Help Align Efforts

  • Assist business teams (Business Continuity, Disaster Recovery, Security, and Privacy) to articulate their data-related business rules and requirements to IT, Architecture, and Data Management teams
  • Consider requirements and controls in an integrated fashion
  • Avoid “undoing” work or rendering controls invalid
  • Craft cross-functional accountabilities

Improve Data Repositories

  • Provide accountability and support for improving the quality of data in the repository so it can become an authoritative source of information
  • Reduce likelihood of architectural decisions that limit the organization’s ability to analyze its information
  • Increase ability to find authoritative information quickly

Improve Confidence in Data

  • Increase confidence in data-related decisions
  • Increase ability to make timely data-related decisions (this can affect time-to-market for projects and applications)
  • Increase confidence in data appearing in financial and management reports
  • Increase confidence in data strategy by providing a cross-functional team to weigh in on key decisions

Read Next:

Goals and Principles for Data Governance

What do you want Data Governance to accomplish?  Regardless of the focus of your program, chances are you hope to accomplish the following universal goals for Data Governance programs: Goal – Enable better decision-making Goal – Reduce operational friction Goal –...

Setting Governance Roles and Responsibilities

Who does what in a Data Governance program? First, a group of individuals (or a hierarchy of groups) representing a cross-section of stakeholder groups makes a set of rules in the form of policies, standards, requirements, guidelines, or data definitions. (Or, they...

Defining Data Governance

How you define your program will influence your ability to manage it — to keep all participants on focus, in sync, and striving toward the same goals.

Establishing a Data Governance Office

Most organizations that begin a formal Data Governance and Stewardship effort need a support team to facilitate and coordinate activities of councils, stewards, and stakeholders. This support team may be individual contributors who have been doing this work informally...

Funding Models: Funding Data Governance

The DGI Data Governance Framework addresses funding two ways: Obtaining funding and support is a phase in the Data Governance Life Cycle Funding is part of one of the components of the framework. What type of funding is needed? Data Governance programs need to...

Focus Areas for Data Governance: Policy, Standards, Strategy

This type of program typically comes into existence because some group within the organization needs support from a cross-functional leadership body. For example, companies moving from silo development to enterprise systems may find their application development teams...

Governance and Issue Resolution

One of the three most important jobs of a Data Governance program is to help resolve data-related issues. These may be conflicting data definitions, data usage concerns, or problems with how data is sourced, how it is integrated, how it is protected, or a myriad of...

Dealing With Politics

It’s essential that Data Governance and Stewardship program facilitators avoid being “caught up” in politics. It’s our jobs to acknowledge the realities of the situations we work with, while avoiding taking sides or engaging in behaviors that could be perceived as favoring one set of data stakeholders at the expense of others.

Focus Areas for Data Governance: Data Warehouses and Business Intelligence (BI)

This type of program typically comes into existence in conjunction with a specific data warehouse, data mart, or BI tool. These types of efforts require tough data-related decisions, so organizations often implement governance to help make initial decisions, to...

Governance and Decision-Making

Remember our (long) definition for Data Governance? “Data Governance is a system of decision rights and accountabilities for information-related processes, executed according to agreed-upon models which describe who can take what actions with what information, and...