Most organizations have string change management – or at least change control – mechanisms for technology. They usually have change management for software applications. They have change management for websites. And yet, many organizations do not practice structured change management for data.

Implementing Change Management

Why is this important? Some types of data – master data and reference data – should have tightly controlled sets of valid values. These values appear in thousands and millions of transactions; without change control, different repositories storing master and reference data get out of sync.

One role of Data Governance is to set the scope of data-related change management and to oversee change management activities.

 

Examples of data-related change management are:

  • Changes to allowable values for reference tables
  • Changes to physical data stores that impact the ability to access or protect in-scope data
  • Changes to data models
  • Changes to data definitions
  • Changes to data structures
  • Changes to data movement
  • Changes to the structure of metadata repositories
  • Changes to types of metadata included in a metadata repository
  • Changes to stewardship responsibilities

Some of the organizations I’ve assisted have wanted highly-structured, step-by-step change management processes. Having such processes have helped train participants to sync up their activities, and they’ve helped prove to auditors that formal, auditable processes were being followed.

Other organizations did not feel the need for documented processes. These groups were used to managing other types of change; for them, applying this to data was not a stretch.

Another organization I worked with felt it would be considered oppressive to ask all its business units to commit to formal change management. Instead, it set a requirement for change notification. Data Stewards were asked to notify the Data Governance Office (DGO) about certain types of changes. Then the DGO would communicate the changes to all known data stakeholders and would collect feedback about potential issues. If needed, the DGO would facilitate discussions about impacts and issues.

Read Next:

Demonstrating Value

Everything an organization does should tie to one of three universal value drivers. Data Governance efforts MUST tie back to one or more of these drivers. And YOU must communicate how it does.

Defining Organizational Structures

There is no single “right” way to organize Data Governance and Stewardship. Some organizations have distinct Data Governance programs. Others embed Data Governance activities into Data Quality or Master Data Management programs.

Governance Communications

At a Data Governance Conference in Orlando, Florida (USA), a group of managers of successful Data Governance programs reached a startling consensus: They agreed that Data Governance is actually somewhere between 80 and 95% communications!How can this be? They said...

Governance and Alignment

Data Governance is a balancing act. On the one hand, you need to exert control over how groups create data, manage data, and use data. On the other hand, you need to promote appropriate levels of flexibility. You need to ensure that data-related efforts support the...

Governance and Issue Resolution

One of the three most important jobs of a Data Governance program is to help resolve data-related issues. These may be conflicting data definitions, data usage concerns, or problems with how data is sourced, how it is integrated, how it is protected, or a myriad of...

Defining Data Governance

How you define your program will influence your ability to manage it — to keep all participants on focus, in sync, and striving toward the same goals.

Focus Areas for Data Governance: Policy, Standards, Strategy

This type of program typically comes into existence because some group within the organization needs support from a cross-functional leadership body. For example, companies moving from silo development to enterprise systems may find their application development teams...

Data Governance Program Phases

As you perform the activities needed to gain support and funding, remember that your program may plan to address multiple focus areas. Each new effort should be introduced using the seven steps of the life cycle. Even specific governance-led projects, such as creating a set of data standards, will want to follow the Data Governance Life Cycle steps.

Governance and Decision-Making

Remember our (long) definition for Data Governance? “Data Governance is a system of decision rights and accountabilities for information-related processes, executed according to agreed-upon models which describe who can take what actions with what information, and...

Focus Areas for Data Governance

All Data Governance programs are not alike. Quite the contrary: programs can use the same framework, employ the same processes, and still appear very different. Why is this? It’s because of what the organization is trying to make decisions about or enforce rules for....