Most organizations have string change management – or at least change control – mechanisms for technology. They usually have change management for software applications. They have change management for websites. And yet, many organizations do not practice structured change management for data.

Implementing Change Management

Why is this important? Some types of data – master data and reference data – should have tightly controlled sets of valid values. These values appear in thousands and millions of transactions; without change control, different repositories storing master and reference data get out of sync.

One role of Data Governance is to set the scope of data-related change management and to oversee change management activities.

 

Examples of data-related change management are:

  • Changes to allowable values for reference tables
  • Changes to physical data stores that impact the ability to access or protect in-scope data
  • Changes to data models
  • Changes to data definitions
  • Changes to data structures
  • Changes to data movement
  • Changes to the structure of metadata repositories
  • Changes to types of metadata included in a metadata repository
  • Changes to stewardship responsibilities

Some of the organizations I’ve assisted have wanted highly-structured, step-by-step change management processes. Having such processes have helped train participants to sync up their activities, and they’ve helped prove to auditors that formal, auditable processes were being followed.

Other organizations did not feel the need for documented processes. These groups were used to managing other types of change; for them, applying this to data was not a stretch.

Another organization I worked with felt it would be considered oppressive to ask all its business units to commit to formal change management. Instead, it set a requirement for change notification. Data Stewards were asked to notify the Data Governance Office (DGO) about certain types of changes. Then the DGO would communicate the changes to all known data stakeholders and would collect feedback about potential issues. If needed, the DGO would facilitate discussions about impacts and issues.

Read Next:

Assigning Data Ownership

One of the tenets of Data Governance is that enterprise data doesn’t “belong” to individuals. It is an asset that belongs to the enterprise. Still, it needs to be managed…

Focus Areas for Data Governance: Privacy, Compliance, Security

This type of program typically comes into existence because of concerns about Data Information Security controls, or compliance. Compliance, in this context, may refer to regulatory compliance, contractual compliance, or compliance with internal requirements.This...

Focus Areas for Data Governance: Architecture, Integration

This type of program typically comes into existence in conjunction with a major system acquisition, development effort, or update that requires new levels of cross-functional decision-making and accountabilities.What other types of groups and initiatives might want...

Goals and Principles for Data Governance

What do you want Data Governance to accomplish?  Regardless of the focus of your program, chances are you hope to accomplish the following universal goals for Data Governance programs: Goal – Enable better decision-making Goal – Reduce operational friction Goal –...

Demonstrating Value

Everything an organization does should tie to one of three universal value drivers. Data Governance efforts MUST tie back to one or more of these drivers. And YOU must communicate how it does.

Governance and Alignment

Data Governance is a balancing act. On the one hand, you need to exert control over how groups create data, manage data, and use data. On the other hand, you need to promote appropriate levels of flexibility. You need to ensure that data-related efforts support the...

Focus Areas for Data Governance: Data Warehouses and Business Intelligence (BI)

This type of program typically comes into existence in conjunction with a specific data warehouse, data mart, or BI tool. These types of efforts require tough data-related decisions, so organizations often implement governance to help make initial decisions, to...

Defining Data Governance

How you define your program will influence your ability to manage it — to keep all participants on focus, in sync, and striving toward the same goals.

Governance and Issue Resolution

One of the three most important jobs of a Data Governance program is to help resolve data-related issues. These may be conflicting data definitions, data usage concerns, or problems with how data is sourced, how it is integrated, how it is protected, or a myriad of...

Data Governance Program Phases

As you perform the activities needed to gain support and funding, remember that your program may plan to address multiple focus areas. Each new effort should be introduced using the seven steps of the life cycle. Even specific governance-led projects, such as creating a set of data standards, will want to follow the Data Governance Life Cycle steps.