One of the three most important jobs of a Data Governance program is to help resolve data-related issues. These may be conflicting data definitions, data usage concerns, or problems with how data is sourced, how it is integrated, how it is protected, or a myriad of other issues.

Governance and Issue Resolution

Data Governance programs are generally structured to allow an orderly and predictable issue escalation path for data issues that pulls together the right stakeholders at the right time with the right research and analysis, so they can make a decision that is right for the enterprise.

The DGI Data Governance Framework includes “Resolving Issues” as a key Governance process. Of course, every organization will decide how much structure and formality to bring to the process of resolving data-related issues.

Ideally, this process should be standardized, documented, and repeatable. It should be crafted in such a way to support regulatory and compliance requirements for Data Management, Privacy, Security, and Access Management. Record-keeping should provide a clear history of which stakeholders were involved in resolving an issue, what resources/analysis were used, and what alternatives were considered.

Read Next:

Focus Areas for Data Governance: Data Quality

This type of program typically comes into existence because of issues around the quality, integrity, or usability of data. It may be sponsored by a Data Quality group or a business team that needs better quality data. (For example: Data Acquisition or  Mergers &...

Governance and Decision-Making

Remember our (long) definition for Data Governance? “Data Governance is a system of decision rights and accountabilities for information-related processes, executed according to agreed-upon models which describe who can take what actions with what information, and...

Establishing a Data Governance Office

Most organizations that begin a formal Data Governance and Stewardship effort need a support team to facilitate and coordinate activities of councils, stewards, and stakeholders. This support team may be individual contributors who have been doing this work informally...

Working with Data Stewards

Approaches to Assigning Data Ownership and Stewardship Organizations can take multiple approaches to assigning Data Owners and Data Stewards for enterprise data. In doing so, they need to consider several factors and answer the following questions.Question #1:  Should...

Choosing Governance Models

It’s important to define the organizational structure of your Data Governance program. But before you can do that you have to define your governance model at a higher level. You need to consider what types of decisions your governance bodies will be called upon to...

Implementing Change Management

Most organizations have string change management – or at least change control – mechanisms for technology. They usually have change management for software applications. They have change management for websites. And yet, many organizations do not practice structured...

Governance Communications

At a Data Governance Conference in Orlando, Florida (USA), a group of managers of successful Data Governance programs reached a startling consensus: They agreed that Data Governance is actually somewhere between 80 and 95% communications!How can this be? They said...

Starting a Data Governance Program

A successful Data Governance program does not begin with the design of the program! Before you start deciding who goes on what committee, you should be clear about your program’s value statement. You should have developed a roadmap to share with stakeholders. Those...

Engaging Stewards and Stakeholders

It seems like there are two types of Data Governance and Stewardship programs: Thriving ones, with highly-engaged stakeholders, and Ones whose futures are in question, since stakeholders and stewards are only sporadically involved or give only weak support to the...

Defining Organizational Structures

There is no single “right” way to organize Data Governance and Stewardship. Some organizations have distinct Data Governance programs. Others embed Data Governance activities into Data Quality or Master Data Management programs.