Approaches to Assigning Data Ownership and Stewardship

Organizations can take multiple approaches to assigning Data Owners and Data Stewards for enterprise data. In doing so, they need to consider several factors and answer the following questions.

Working with Data Stewards

Question #1:  Should we tie ownership/stewardship to data types?

Accountabilities may be tied to a type of data that may be

  • Master Data
  • Transactional Data
  • Reference Data
  • Metadata
  • Historical Data
  • Temporary Data
  • or other types

Best Practice: Most organizations answer “yes” to this question. Stewards or others who are assigned data-related responsibilities are expected to work with only one or a few types of data rather than all types.

Question #2:  For what data subject areas will we first assign ownership/stewardship?

Information-related or metadata-related accountabilities that focus on Master Data may be tied to different subject areas, such as:

  • Customers
  • Products
  • Locations
  • Organizational hierarchies
  • etc.

Best Practice: Data Governance pilot projects often strive to govern a manageable set of data elements within a single subject area. Accountabilities are assigned to standardize data elements, specify and enforce valid values, and address data quality.

Question #3:  How should we assign ownership/stewardship to data subject areas?

Some organizations assign an Enterprise Data Steward with ultimate accountability for data within a subject area or domain. Others create communities of Data Stewards and others who work with that data. Another approach is to tie accountabilities to a Master Data Management program rather than to stewardship. And still another approach is to assign data-related responsibilities to functional roles rather than to stewards.

Question #4:  At what level of granularity should we assign ownership/stewardship?

Information-related accountabilities may be tied to different levels of granularity of information.

  • Documents
  • Content units (used in documents, web displays, reports, etc.)
  • Data feeds
  • Data records
  • Raw data
    • Domains of data (for example, all data related to Customers)
    • Usage-related collections of data (for example, all fields appearing on a certain report, or all fields included in a compliance mandate such as HIPAA, HMDA, or Sarbanes-Oxley)
    • Specific data entities (for example, within a data feed, an entire a Customer record, including the customer’s ID, name, and all related data)
    • Data attributes (for example, only a certain preference flag within a customer record)

Best Practice: Most organizations getting started with Data Governance and Stewardship feel that assigning all levels of granularity simultaneously is a “boil the ocean” type of mistake. Instead, they choose certain levels of accountability for certain data, then expand scope over time.

Question #5:  Should we tie data ownership/stewardship to processes and data flows?

Some organizations assign just one Data Owner or Data Steward for a data element or subject area. This person is responsible for the data no matter where it appears in an organization. This approach is not feasible for most organizations, however, with complicated data flows.

An alternative is assigning accountabilities for only a few segments in a data flow. One or more Data Stewards or SMEs could be responsible for access control, quality, or typical Master Data responsibilities for specific data within those segments.

Question #6:  Should we tie data ownership/stewardship to compliance and/or usage?

Some organizations assign accountabilities for related sets of data. For example, HIPAA requires protections of personally identifiable information; some organizations put teams in place to locate that data across systems, to specify controls for the information, and to monitor compliance. Likewise, some lending institutions may assign accountabilities to review all data subject to Home Mortgage Disclosure Act (HMDA) compliance.

Read Next:

Focus Areas for Data Governance

All Data Governance programs are not alike. Quite the contrary: programs can use the same framework, employ the same processes, and still appear very different. Why is this? It’s because of what the organization is trying to make decisions about or enforce rules for....

Governance and Alignment

Data Governance is a balancing act. On the one hand, you need to exert control over how groups create data, manage data, and use data. On the other hand, you need to promote appropriate levels of flexibility. You need to ensure that data-related efforts support the...

Focus Areas for Data Governance: Data Quality

This type of program typically comes into existence because of issues around the quality, integrity, or usability of data. It may be sponsored by a Data Quality group or a business team that needs better quality data. (For example: Data Acquisition or  Mergers &...

Starting a Data Governance Program

A successful Data Governance program does not begin with the design of the program! Before you start deciding who goes on what committee, you should be clear about your program’s value statement. You should have developed a roadmap to share with stakeholders. Those...

Focus Areas for Data Governance: Management Alignment

This type of program typically comes into existence when managers find it difficult to make “routine” data-related management decisions because of their potential effect on operations or compliance efforts.Managers may realize they need to come together to make...

Governance and Decision-Making

Remember our (long) definition for Data Governance? “Data Governance is a system of decision rights and accountabilities for information-related processes, executed according to agreed-upon models which describe who can take what actions with what information, and...

Goals and Principles for Data Governance

What do you want Data Governance to accomplish?  Regardless of the focus of your program, chances are you hope to accomplish the following universal goals for Data Governance programs: Goal – Enable better decision-making Goal – Reduce operational friction Goal –...

Assigning Data Ownership

One of the tenets of Data Governance is that enterprise data doesn’t “belong” to individuals. It is an asset that belongs to the enterprise. Still, it needs to be managed…

Dealing With Politics

It’s essential that Data Governance and Stewardship program facilitators avoid being “caught up” in politics. It’s our jobs to acknowledge the realities of the situations we work with, while avoiding taking sides or engaging in behaviors that could be perceived as favoring one set of data stakeholders at the expense of others.

Focus Areas for Data Governance: Architecture, Integration

This type of program typically comes into existence in conjunction with a major system acquisition, development effort, or update that requires new levels of cross-functional decision-making and accountabilities.What other types of groups and initiatives might want...