The DGI Data Governance Framework addresses funding two ways:

  • Obtaining funding and support is a phase in the Data Governance Life Cycle
  • Funding is part of one of the components of the framework.
Funding Data Governance

What type of funding is needed? Data Governance programs need to establish funding for four types of Data Governance and Stewardship efforts:

  1. The initial design and implementation of the Data Governance program
  2. Ongoing Data Governance / Stewardship / Compliance / Access Management efforts
  3. Ongoing Data Stewardship / Data Quality efforts
  4. Recommended projects and efforts that come from governance-led issue analysis.

It is this last type of funding that typically poses the greatest challenge for companies. We’ll look at options for funding issue-analysis recommendations. But first, let’s look at typical funding models for the first three types of Data Governance efforts.

 

Funding the Design of a Data Governance Program

Typically, organizations choose one of four models for creating a formal and acknowledged Data Governance program.

  1. A project to build a program
  2. Line item in other project
  3. Special funding by a stakeholder group
  4. Data Governance included in IT / Data Management / Data Architecture efforts.

1. A project to build a program

With this approach, a formal project is created to design and implement the program. Often, this project includes a prototype effort to which Data Governance is applied, such as a JAD session of Data Stakeholders or Data Stewards to address a legacy data issue.
Note: many “boilerplate” project plans are designed for the development of a piece of software, not for the development of a program. They can include steps and deliverables that don’t make sense for a program development project. Also, a certain amount of flexibility needs to be built into program development project plans, or project managers can find themselves having to process change requests when efforts to define scope and focus require multiple iterations, or meetings to discuss stakeholder needs are rescheduled.

 

2. Line item in another project

With this approach, a project that requires Data Governance to succeed in its objectives will include activities to initiate and fund the design and deployment of a formal Data Governance program. Examples would be SOA or Master Data Management initiatives or Data Warehouse projects.

 

3. Special funding from a stakeholder group

With this approach, a department or program with a major stake in the proper governance of data will initiate and fund the design and deployment of a formal Data Governance program. Examples would be SOA or Master Data Management programs, Data Warehouse initiatives, compliance initiatives such as Basel II or Sarbanes-Oxley, or Privacy/Access Control programs.

 

4. Data Governance included in IT / Data Management / Data Architecture efforts

With this approach, Data Governance is included in another technology or data-related program. If Data Governance is included in Enterprise Data Management efforts, for example, the program may be given a bucket of money to implement governance without being held to the type of spending oversight generally required of projects.

Read Next:

Assigning Data Ownership

One of the tenets of Data Governance is that enterprise data doesn’t “belong” to individuals. It is an asset that belongs to the enterprise. Still, it needs to be managed…

Goals and Principles for Data Governance

What do you want Data Governance to accomplish?  Regardless of the focus of your program, chances are you hope to accomplish the following universal goals for Data Governance programs: Goal – Enable better decision-making Goal – Reduce operational friction Goal –...

Focus Areas for Data Governance: Architecture, Integration

This type of program typically comes into existence in conjunction with a major system acquisition, development effort, or update that requires new levels of cross-functional decision-making and accountabilities.What other types of groups and initiatives might want...

Focus Areas for Data Governance: Policy, Standards, Strategy

This type of program typically comes into existence because some group within the organization needs support from a cross-functional leadership body. For example, companies moving from silo development to enterprise systems may find their application development teams...

Engaging Stewards and Stakeholders

It seems like there are two types of Data Governance and Stewardship programs: Thriving ones, with highly-engaged stakeholders, and Ones whose futures are in question, since stakeholders and stewards are only sporadically involved or give only weak support to the...

Implementing Change Management

Most organizations have string change management – or at least change control – mechanisms for technology. They usually have change management for software applications. They have change management for websites. And yet, many organizations do not practice structured...

Governance and Issue Resolution

One of the three most important jobs of a Data Governance program is to help resolve data-related issues. These may be conflicting data definitions, data usage concerns, or problems with how data is sourced, how it is integrated, how it is protected, or a myriad of...

Governance and Decision-Making

Remember our (long) definition for Data Governance? “Data Governance is a system of decision rights and accountabilities for information-related processes, executed according to agreed-upon models which describe who can take what actions with what information, and...

Data Governance Program Phases

As you perform the activities needed to gain support and funding, remember that your program may plan to address multiple focus areas. Each new effort should be introduced using the seven steps of the life cycle. Even specific governance-led projects, such as creating a set of data standards, will want to follow the Data Governance Life Cycle steps.

Defining Organizational Structures

There is no single “right” way to organize Data Governance and Stewardship. Some organizations have distinct Data Governance programs. Others embed Data Governance activities into Data Quality or Master Data Management programs.