Most organizations have string change management – or at least change control – mechanisms for technology. They usually have change management for software applications. They have change management for websites. And yet, many organizations do not practice structured change management for data.

Implementing Change Management

Why is this important? Some types of data – master data and reference data – should have tightly controlled sets of valid values. These values appear in thousands and millions of transactions; without change control, different repositories storing master and reference data get out of sync.

One role of Data Governance is to set the scope of data-related change management and to oversee change management activities.

 

Examples of data-related change management are:

  • Changes to allowable values for reference tables
  • Changes to physical data stores that impact the ability to access or protect in-scope data
  • Changes to data models
  • Changes to data definitions
  • Changes to data structures
  • Changes to data movement
  • Changes to the structure of metadata repositories
  • Changes to types of metadata included in a metadata repository
  • Changes to stewardship responsibilities

Some of the organizations I’ve assisted have wanted highly-structured, step-by-step change management processes. Having such processes have helped train participants to sync up their activities, and they’ve helped prove to auditors that formal, auditable processes were being followed.

Other organizations did not feel the need for documented processes. These groups were used to managing other types of change; for them, applying this to data was not a stretch.

Another organization I worked with felt it would be considered oppressive to ask all its business units to commit to formal change management. Instead, it set a requirement for change notification. Data Stewards were asked to notify the Data Governance Office (DGO) about certain types of changes. Then the DGO would communicate the changes to all known data stakeholders and would collect feedback about potential issues. If needed, the DGO would facilitate discussions about impacts and issues.

Read Next:

Working with Data Stewards

Approaches to Assigning Data Ownership and Stewardship Organizations can take multiple approaches to assigning Data Owners and Data Stewards for enterprise data. In doing so, they need to consider several factors and answer the following questions.Question #1:  Should...

Starting a Data Governance Program

A successful Data Governance program does not begin with the design of the program! Before you start deciding who goes on what committee, you should be clear about your program’s value statement. You should have developed a roadmap to share with stakeholders. Those...

Focus Areas for Data Governance: Data Warehouses and Business Intelligence (BI)

This type of program typically comes into existence in conjunction with a specific data warehouse, data mart, or BI tool. These types of efforts require tough data-related decisions, so organizations often implement governance to help make initial decisions, to...

Governance and Decision-Making

Remember our (long) definition for Data Governance? “Data Governance is a system of decision rights and accountabilities for information-related processes, executed according to agreed-upon models which describe who can take what actions with what information, and...

Choosing Governance Models

It’s important to define the organizational structure of your Data Governance program. But before you can do that you have to define your governance model at a higher level. You need to consider what types of decisions your governance bodies will be called upon to...

Engaging Stewards and Stakeholders

It seems like there are two types of Data Governance and Stewardship programs: Thriving ones, with highly-engaged stakeholders, and Ones whose futures are in question, since stakeholders and stewards are only sporadically involved or give only weak support to the...

Assigning Data Ownership

One of the tenets of Data Governance is that enterprise data doesn’t “belong” to individuals. It is an asset that belongs to the enterprise. Still, it needs to be managed…

Dealing With Politics

It’s essential that Data Governance and Stewardship program facilitators avoid being “caught up” in politics. It’s our jobs to acknowledge the realities of the situations we work with, while avoiding taking sides or engaging in behaviors that could be perceived as favoring one set of data stakeholders at the expense of others.

Data Governance Program Phases

As you perform the activities needed to gain support and funding, remember that your program may plan to address multiple focus areas. Each new effort should be introduced using the seven steps of the life cycle. Even specific governance-led projects, such as creating a set of data standards, will want to follow the Data Governance Life Cycle steps.

Focus Areas for Data Governance: Policy, Standards, Strategy

This type of program typically comes into existence because some group within the organization needs support from a cross-functional leadership body. For example, companies moving from silo development to enterprise systems may find their application development teams...