Most organizations have string change management – or at least change control – mechanisms for technology. They usually have change management for software applications. They have change management for websites. And yet, many organizations do not practice structured change management for data.

Implementing Change Management

Why is this important? Some types of data – master data and reference data – should have tightly controlled sets of valid values. These values appear in thousands and millions of transactions; without change control, different repositories storing master and reference data get out of sync.

One role of Data Governance is to set the scope of data-related change management and to oversee change management activities.

 

Examples of data-related change management are:

  • Changes to allowable values for reference tables
  • Changes to physical data stores that impact the ability to access or protect in-scope data
  • Changes to data models
  • Changes to data definitions
  • Changes to data structures
  • Changes to data movement
  • Changes to the structure of metadata repositories
  • Changes to types of metadata included in a metadata repository
  • Changes to stewardship responsibilities

Some of the organizations I’ve assisted have wanted highly-structured, step-by-step change management processes. Having such processes have helped train participants to sync up their activities, and they’ve helped prove to auditors that formal, auditable processes were being followed.

Other organizations did not feel the need for documented processes. These groups were used to managing other types of change; for them, applying this to data was not a stretch.

Another organization I worked with felt it would be considered oppressive to ask all its business units to commit to formal change management. Instead, it set a requirement for change notification. Data Stewards were asked to notify the Data Governance Office (DGO) about certain types of changes. Then the DGO would communicate the changes to all known data stakeholders and would collect feedback about potential issues. If needed, the DGO would facilitate discussions about impacts and issues.

Read Next:

Funding Models: Funding Data Governance

The DGI Data Governance Framework addresses funding two ways: Obtaining funding and support is a phase in the Data Governance Life Cycle Funding is part of one of the components of the framework. What type of funding is needed? Data Governance programs need to...

Focus Areas for Data Governance: Data Quality

This type of program typically comes into existence because of issues around the quality, integrity, or usability of data. It may be sponsored by a Data Quality group or a business team that needs better quality data. (For example: Data Acquisition or  Mergers &...

Data Governance Program Phases

As you perform the activities needed to gain support and funding, remember that your program may plan to address multiple focus areas. Each new effort should be introduced using the seven steps of the life cycle. Even specific governance-led projects, such as creating a set of data standards, will want to follow the Data Governance Life Cycle steps.

Setting Governance Roles and Responsibilities

Who does what in a Data Governance program? First, a group of individuals (or a hierarchy of groups) representing a cross-section of stakeholder groups makes a set of rules in the form of policies, standards, requirements, guidelines, or data definitions. (Or, they...

Dealing With Politics

It’s essential that Data Governance and Stewardship program facilitators avoid being “caught up” in politics. It’s our jobs to acknowledge the realities of the situations we work with, while avoiding taking sides or engaging in behaviors that could be perceived as favoring one set of data stakeholders at the expense of others.

Defining Data Governance

How you define your program will influence your ability to manage it — to keep all participants on focus, in sync, and striving toward the same goals.

Defining Organizational Structures

There is no single “right” way to organize Data Governance and Stewardship. Some organizations have distinct Data Governance programs. Others embed Data Governance activities into Data Quality or Master Data Management programs.

Engaging Stewards and Stakeholders

It seems like there are two types of Data Governance and Stewardship programs: Thriving ones, with highly-engaged stakeholders, and Ones whose futures are in question, since stakeholders and stewards are only sporadically involved or give only weak support to the...

Focus Areas for Data Governance: Privacy, Compliance, Security

This type of program typically comes into existence because of concerns about Data Information Security controls, or compliance. Compliance, in this context, may refer to regulatory compliance, contractual compliance, or compliance with internal requirements.This...

Governance and Issue Resolution

One of the three most important jobs of a Data Governance program is to help resolve data-related issues. These may be conflicting data definitions, data usage concerns, or problems with how data is sourced, how it is integrated, how it is protected, or a myriad of...